
Vnode Layering Changes in NetBSD Version 1.5

William Studenmund

November 29, 1999

Veridian MRJ Technology Solutions
NASA Ames Research Center

In this paper, I describe changes to the vnode layer in NetBSD[1] between
versions 1.4 and 1.5 to assist layered filesystems. The major feature of these

changes on the whole is that layered filesystems are now sufficiently robust

for production applications[3]. These changes divide readily into three groups:
modifications to vnode locking along the lines suggested by Heidemann in [2],

changes to the vnode locking protocol, and the introduction of an overlay filesys-

tem. In addition to describing these changes, I will describe the testing we have

performed.
When starting work on the data migration layer [3], I evaluated a number

of technologies. The stacked file systems of NetBSD looked promising, espe-
cially the null layer, nullfs. Unfortunately it did not perform well under load.

Multiple concurrent access, either simultaneously accessing the stacked and the
underlying layer or multiple accesses of the upper layer (say with a multiprocess
make invoked with the make -j command) would result in kernel panics due to

locking protocol errors.
I made two main changes to the vnode locking implementation. The first was

to ensure that nullfs respected the locking protocol: that it obtains all locks from

bottom to top and that the VOP_LOOKUP operation foregoes attempting to

generate a null layer vnode when looking up the "." path component.
The more dramatic change is to implement the shared vnode lock scheme de-

scribed by Heidemann[2] as part of his coherence management proposals. With

this change, rather than having a vnode (or the associated fs-private storage

as done by FreeBSD[4]) provide a lock structure for use by the lock manager,

it provides a pointer to a lock structure. For a leaf node (a node on a typi-
cal filesystem), it points to the lock structure in that vnode. For a vnode in a

stacked filesystem, it points to the lock structure in the underlying layer. In this
manner, the entire stack will lock and unlock at the same time. Additionally,

a layered filesystem only needs this pointer to perform locking operations - it
does not need to call underlying filesystem layers. If a filesystem performs vn-

ode locking other than a call to the lock manager (such as the union filesystem

which merges two filesystems, or the NFS filesystem which performs no vnode



locking),it exportsa NULLpointerandlayeredfilesystemsexplicitlycall its
lockingroutines.

NTwoaspectsof. etBSDsvnodelockingprotocolmakeproperlayeredfilesys-
ternoperationchallenging.Thefirstisthattherewasaflawin theVOP_LOOKUP
operation'serrorcasehandling.In caseof a returnederror,thevnodeforthe
parentdirectoryisdefinedasbeinglocked.Theflawis that lookingupthe".."
pathcomponentrequiresunlockingandre-lockingtheparentdirectory.In case
of anerrorre-lockingtheparent,therewasnowaytocommunicatetothecaller
that theparentwasunlocked.If oneof thetraversedlayersisaunionlayer(a
layerwhichbreakstheability to shareonecommonvnodelock),thenvnode
layersstackedaboveit cangetintoinconsistentlockstatesandcreatedeadlock
situations.Thispotentialiseliminatedbyaddinga newflagto thosepassed
aspartof thelookupoperation,PDIRUNLOCK.Thisflagbeingsetuponexit
to the lookupcallindicatesthattheparentdirectorywasunlocked,preventing
suchinconsistentstates.Additionallythe layeredlookuproutineissimplified
asthisflagissetevenwhennotlookingup the".." pathcomponent.

Theseconddifficultaspectis that a numberof VOPoperationswill auto-
maticallydeleteareferencecountonapassed-invnode.Thisbehaviorsimplifies
a numberof callerroutines,butgreatlycomplicateslayeredfilesystems.It has
beenworkedaroundby'layeredfilesystemsexplicitlyaddingreferencesto avn-
odebeforesuchaVOPoperationdownto theunderlyinglayer.Thisbehavior
is inefficient,anddoesnotscalewellto manylayersstackedatopeachother.
Additionally"certainoperationswhichcreatenewvnodes(VOP_CREATEfor
example)w-illalsodeletethereferenceto thenewlycreatedvnode.Thereis
anon-goingprojectwhichis scheduledto bemergedinto theNetBSDsource
for 1.5to changeall suchoperationsto nolongerautomaticallyreleasevnode
references.FreeBSDhasalreadymergedin manysuchchanges.

Thethird areaof layeringchangeis the introductionof the overlay layered

filesystem. It is similar to the null layer, except that it does not create a new im-
age of the underlying vnodes, it places itself between the underlying filesystem

and all future access. This layer is very useful for a certain class of problems

where the layered filesystem needs to strictly control access to the underly-

ing files. One such example is the data migration layer we have developed[a]
where we need to prevent processes (even root ones) from noticing that we have

migrated their files to tape storage. Another application would be the devel-

opment of new access control or security methods where the layered ffiesystem

could (and definitionaly would need to) totally control access to the files.
As part of this change, most of the null filesystem was moved into a generic

set of routines for all layered filesystems which was located in sys/miscfs/genfs.

These routines permit the null, umap, and overlay layers to share a large amount
of code. Only" the individual mount and unmount routines and vfs data struc-
tures are not shared.

The tests for these changes were not complicated. As mentioned above, most

any simultaneous access would panic a kernel. Thus the simple test regime we
used consisted of making multiple null mounts of a given leaf filesystem and

generating simultaneous access both in all null layers and in the underlying



file store.In onefilesvstem(eithertheunderlyingfilesystemor oneof the null

layers), I ran a make -j 10 kernel compile, and in the others I performed

multiple hierarchical file accesses, such as Is -IR. An unmodified kernel would

panic readily (in fact the make -j 10 alone in a null layer would generate a

panic), while an updated kernel had no difficulty.
In conclusion, this paper describes changes to the NetBSD vnode system

made between versions 1.4 and 1.5 which have greatly improved the stability

and robustness of layered filesystems. The method of locking layered vnodes has

been improved, the VOP protocol has been modified to not present difficulties

to layered filesystems, and a new class of layered filesystems has been introduced

with the overlay filesystem. On the whole, these changes have opened up new

layered filesvstem opportunities within NetBSD.

References

[1] http://_wcw.netbsd.org/

[2] John Shelby Heidemann. Stackable Design of File Systems. Ph.D. disserta-
tion, University of California, Los Angeles, 1995.

[3] William R. Studenmund. DMFS - a Data Migration Virtual Filesystem Layer
for NetBSD. Submitted for presentation at USENIX 2000.

[4] http: / / www.freebsd.org/


